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DIFFRACTION OF A DIPOLE FIELD BY A CONICAL FIELD+ 

by P. L. E. Uslenghi 
The Univt:n-sit-: of Michigan, Tie Radiation Laboratory, Ann Arbor, Michigan, U. S. A .  - Summary 

The diffracted field due to a perfectly conducting conical ring, in the presence 

of an axially oriented electric dipole located on the axis of symmetry 6 = 0, is 

obtained by means of an anal.ytic continuation technique. 

‘fie conical ring occupies that region a < 0 c: K -. u of a spherical shell 

b < r < a, which i s  limited by the surface of a cone of semi-angle 8 = CI . 

Various particular cases  are investigated in detail, and the solutions of 

other diffraction problems by the same continuation technique are outlined 

. 

+ n e  research reported in his paper was ,sponsored by the National .4eronautics 
and Space Administration, Langley Research (>:it Sr, under Grant N s G - 4 4 4 .  
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1. lntrod.-lctim 

In tbis paper, the diffract{ ci electromagnetl:,- f~.t~lcf mmiiiced by an axially 

- 

orient;d electric di!)ole i o c a t d  on the axis of symmetry of a perfectly conducting 

conical ring i~ considered. 

various regions, an3 in each region the compone.its of the diffracted electra- 

magnetic fie;d a r e  dmived from a properly chosen Hertzian function. 

coefficients which appear in the expressions of these Hertzian functions a r e  then 

determined by requiying that the components of the total electromagnetic field 

satisfy the boundary conditims on the surface of the ring, and be  continuous across  

The free space ::urrcunding the ring is divided into 

The unknown 

the ideal surfaces which separate two adjacent regions of space. 

Although it  appears that this boundary value problem has not been previously 

considered, the method of solution, which makes use  of Legendre functions of 

non-integral order  and of an appropriate continuation technique, was first ly employed 

by Schelkunoff (1941) in  his treatment of the biconical antenna, and subsequently by 

many other authors (see e. g. Northover (1962) and Rogers, Schindler and Schultz 
b 

(1963)) . 

In the following, the rationalized MKS system of units is used, and the time- 

-iwt 
dependence factor e is omitted. 

2. Statement of the problem and boundary conditions. 

With reference to  a system of spherical polar coordinates (r, 8, (d), the 

perfectly conducting conical ring occupies that region CY < 8 < - CY of a spherical 

shell b < r < a, which is limited by the surface of a cone of semi-angle 8 = a 



- b  

.? 

L 

symmetry). An ixxi.ally orieiitec; electric dipole is located on the axis of symmetry 

of the ring at a point 8 = 0, r = h 

The components of the diffracted (incident plus scattered) electric field 

A -b 
E and of the diffracted magnetic field H in the f ree  space surraunding the ring 

can be derived from a scalar  function 

1918; Fock, 1945): 

U ( r ,  6) by means of the relations (Watson, 

i k  a U  
HB = -. , 

E = H  = H  = 0 ,  
@ r e  

(1-2) 

(1-3) 

( 1-4) 

where k = 4 '  and Z = J p  / e '  = 120 K ohms are respectively the free 
€oPo 0 0  

space wave number and the free space intrinsic impedance. 

h: is independent of the @ coordinate, due to the axial symmetry of the problem, 

The Hertzian function 

and must satisfy the reduced wave eguation 

L 

the radiation condition at  infinity, and the appropriate boundary conditions at  the 

r ing 's  surface.  

Since the conical ring is perfectly conductive, the tangential components of 

the tc;al electric field at  its surface a r e  zero. On the 

e = K - Q of the ring E = r) or ,  wing  relations (1-1) 
r 

slant surfaces 8 = c y ,  

and (2): 
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which implies that OE the s!mt aurfaces 

L 

U = r-l ( A  ainkr -1- B cos kr), 

where A and B areconstants .  

On the bases  r = a and r = b of the ring E = 0, or: e 

which implies that 

= M1 , on the basis r = a , XrQ 
ar 

= M2 , on the basis r = b , 

where M and M are constants. ' 

Let UB considcx the function 

1 2 

(4) 

which does not change the field components if used instead of U in relations. (1) , 

and which satisfies the reduced wave equation if U satisfies (2 ) .  On the slant 

= 0 , 
HrU) surfaces U = 0; on the bases  - ar provided that the arbitrary constants 

/r 

are chosen to sarisfy the relations: 

= k(A cos ka - B sin ka) , M 1  

M = k(A COS kb - B sin kb) (8 -2) 

In conclusiou, suppressing the superscript IC/ , we may impose the boundary 

2 

condition U = 0 on the slant surfaces 8 

condition -- a(ru)- 0 on the spherical bases r = a and r = b of the conical ring. 

Q and 8 = ?r -a , and the baundary 

a r  
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The primary field due to the electric dipole may be derived from the function 

where V is a com3i.an-l with the dhensior ie  of an electric; vo'lwge, and 

2 2  % R z ( r  + h  - 2 h q )  , ~ = c o s O .  

The firnetion U can be expanded in the form , 

0 

(10) 

for r > h , - iv 1 - - - (2n+I.)$ kh) 5 (kr)  1' !:>), k h k r  n n n 
n=O 

where P ( q )  is the Legendre plynominal of degree n axd order zero, and + and 

C 

n n 

are related to the Beseel and Hankel functions by the expressions: 
D 

In the following, the exact diffracted e la t romagnet ic  field is abtafned by, 

dividlng the space around the ricg in varioub regions tind by determining the 

appropriate Hertzian function for mch region, The arialysie is carried out in detail 

for the two cases  O <  h < b ( in  sections 3 and 4) and h > a (in sections 5 and 6) ,  while 

In sections 3 and 4, the further extensions of the m e t h d  are outlined in section 7 

case in which the d i p l e  l ies  at  the origin r = 0 is explic 

avoid difficulties (Kleirman and Senior, 1963). 

tly excluded inorder  to 
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I .  

< 

The free syrcr s~rr.m.ndi~ig the conicd ring is divided into the following 

four regions: 

Region 1 (r ,< b) , 

Region IV (r >a) . 

The Hertzian functions for these four regions may be expanded into infinite 

series of elementary wave functions. Since the scattered field must be  finite 
8 

at all points of the axis of symmetry and must satisfy the radiation condition at 

infinity, it is f m d  that in region I: 

n= 1 

in region II: 
I 

in region 111: 

and in region IV: 



Y 

L 

where the positive numbers f i  are  given by the equation: 
j 

"he ser ies  expansions (13) and (16) should contain t e rms  corresponding 

to n = 0; however, these te rms  give no contribution to the diffracted field 

components, as it easily follows from formulas (1) and from the relation 

P ( q )  = 1 . Therefore the ccefficients A and B may be chosen 

arbi t rar i ly ,  and we set A = B = 0 ;  similarly,  the first te rm of expansion (11) 

may be neglbcted withoui any loss of generality. In the following, n will be 

0 0 0 

0 0  

a positi-ve integer. 
cy c 

The coefficients A B , C D C.  and D. a r e  determined by impos- 
n' n j '  j' J J 

ing the boundary conditions on the surface of the conical ring acd the con- 

tinuity of the diffracted field components across  the ideal surfaces which 

separate the four regions from one another. The boundary conditions on the 

slant surfaces 8 = a, 8 = T -CY are  automatically satisfied by the expansions 

(14) and (15). In order that E, = 0 on the spherical bases  of the sca t te re r ,  

it must be: 

= 9 ,  
r =b 

for Q: < . Q < T  - a ,  (18) 

for  CY< Q < T  - a ,  (19) 

while the continuity of E E and H acrosn the surfaces r = a and 

r = b in the angular ranges c) < 0 < a and 7 - 3 < 13 6 I is guaranteed by 

r' 8 d 
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the conditions: 

. 

for o < e < ( v ,  

for K - a  < B , < . r r ;  

(20) 

= 'Ug(b,8) , 

f o r O , < O < a ,  

f o r n  - a < B , < n ,  
(23) 

The unknown coefficients a r e  obtained from relations (18) to (23) by making 

use  of the orthogonality properties of the Legendre functions and of the Wronskian 

relation 'for the Bessel functions. Since this technique has been illustrated in detail 

by other authors ( see  e.g. Northover, 1962), only the resul ts  are given here .  

us set: 

Let 

then one finds: 
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primes indicate derivatives with respect to the a r g m ~ e n t  ka or ’&. The coeffi- 

cienta C: and D are given by the equations: 
+ I- 

3 J 

(27-1) 

(28-1) 
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where: 

rl 
P O  

J1 
+ + 
J a 

The coefficients C. and D. a re  computed by means of relations (27), 

H N 

Cy and D: by means of (28), then C., C., D. and D. a r e  obtained from (24)J 
1 J J J J  J 

and A and B from (25) and (26). Thus, the problem of the exact determination 

of the diffracted field is reduced to the problem of solving the two systems (27) 

n n 

and (28) of infinite linear algebraic equations in an infinite number of unknowns. 

4. Particular solutions for the case 0 < h < b 

In this section, four particular solutions corresponding to special values 

of the parameters  a, b and cr a r e  considered, for the case 0 < h < b. 

Case a = b. -- 
The geometry of the sca t te re r  is shown in fig. 2 .  It is found that 

A = 0, B = ( 2 n + l ) r L  (kh), (31) n n n 

and therefore one has the primary field only. This result  should have been ex- 

pected, since when a = b  regiocs I1 and IKt vanish. In the limit a = b, there is 

no conical ring: one simply has a dipole in free space. 

The scat terer  is naw a perfectly conducting annular disc of zero thickness 



. 

. 

(fig. 3 ) .  It is found that: 

p. = 2 j  - 1 ,  j = 1 ,  2 , .  . . , (32) 
3 

and therefere: 

1 
(33) f ( 2 j  -1) = - - 

4 j - 1  a 

1 
( z j - 1 )  = - -  6 .  (34-2 ) '2m-1 4 j - 1  j m J  

where 6 .  is the Kronecker symbol. It follows that: 
Jm 

(35-1) 

- 
c 0, (37-1) j 

(37-2) 
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c 

(38-1) 

(38-2) 

Case a =a. 

Region lV disappears (fig. 4 ) ,  and in order  to satlsfy the radiation 

condition, 

(39) c .  0, E; = 0 .  
3 J 

The coefficients A D. and D, are given by the relations: 
- 

n' I I 
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+ where D. is to be used fo r  n even, and D.- for n odd 
J J 

Case a = u), (Y = n b  . 

This i s  the case of a circular aperture in a perfectly conducting screen (f ig .  5). 

Formulas (39j, (40), (41) snd (42) hold with 9 

and (34). In particular, 

f(p.) and f (/3.) given by (32), (33) 
j '  J " 1  

and ther.efore 

= o  
2m-1. 

A (44) 

5. General solution f o r  the case h > a . 

The geometry of the problem is that shown in fig. 1. but the dipole is now 

located at  a distance h > a from the origin. The free space surrounding the conical 

r ing is still divided into the four regitins of section 3, and the Hertzian functions are 

now given by the expressions. 



00 
iV 1 

i ; =  4 - - b C (kr )P  Iq), 
4 '0 kh kr n n  n 

I l = l  

(48) 

in regions I, 11, III and W, respectively. 

equation (17), and the coefficients a b , c d. and are determined by 

imposing the boundary conditions on the surface of the conical ring and the continuity 

of the diffracted field components across the ideal surfaces r = a and r = b which 

separate the various regions of f ree  space from one another. 

The positive numbers 8 are given by 
j 

j n'  ai j '  j' J 

It is found that: 

where: 

N 
+ - 1  

d. = - (d.  + d. ) , 
J 2 1 - J  

(51) 

+ + - 
and c and d~ rre tnbe  used for n even, c and d: for n odd. The coefficients 

J j J 
4 

j + - 
c 

equations in infinite unhcwns:  

and d- are given by the two following systems of infinite linear slgebraic 
j j 
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(52-2) 

(53-1) 

where f@.) and f (9.) a r e  sti!l given by (29) and (30).  
I n 1  

Particular solutions for  the case h > a .  6. 

In this section, four particular solutions corresponding to special values of the 

parameters  a, b, and a a r e  considered, for the case h > a. 

Case a = b. L 

The geometry for this case is still that s h m n  in fig. 2 but with h > a.  One finds that 

(54) a = (2n+l) p (kh) ; b = O b  
11 n n 

i. e.  the limit a = b corresponds to a dipole in free space. 
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Case a = 7r/2 

The geometry for this case is illustrated in fig. 3 ; the dipole must now 

be  located at a diatarlce h > a from the origin of the coordinate system. 

coefficienb are given by the following relations: 

The 

a = (4l.n-1) r (kh) , 2m-1 2m-1 
(55-1) 

(30 

a =- f ( 2 j - 1 )  \ c + + '  (kb)+d. I '  , (55-2) 
2m j 2 j - 1  J 2j-1 

j = 1  
2m fi;$id 

(56-1) 2 m - 1 =  0 ,  b 

00 

+ + f 2m (2 j  - 1) \e++ '  j 2j-1 Ika) +d. J P1  2j-1 (kal]] (56-2) 
I =  

where the coefficients c+ and d. are given by the system: 
j 3 

(57-1) 

(57-2) 

(58-1) 
00 
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(58-2) 

Case b = 0 

Region I disappears (fig. 61, and 

cy 

d . = O ,  d . = O .  
J 1 

4 

The coefficients b c and c .  a r e  given by: 
n' j J 

(59) 

60) 

- 
where c+ dnd c .  

j 1 
are to  be used for n even and odd, respectively. 

Case b = 0, a 2 - r b .  

The sca t te rer  i s  a p r f e c t l y  conducting circular disc of zero thickntkss 



(fig. 7). The coefficients of the Hertzian functicms expansions are given by 

formulas (59), (W), (61) and ?62\, inwhich p i ,  f(p.)  and f (9.) h v e  the 
3 !l J 

and therefore, 

5 2m-1 = O  , 

(63) 

( 64) 

7. 

The technique amployed in the preceding sections can also be applied when 

Further appticatione of the method. 

b < h < a , but Uo must then be expanded i n  t e rms  of the functions P (q), 

which are orthogonal in 0 ,< 8 4 a . 
'j 

The case in which the source is an axia!ly oriented magnetic dipole located 

on the axis of symmetry of the conical ring ' :s not very different from the electric 

dipole case,  and is dealt with in a similar way. 

can now be derived from a scalar  function W(r, 0 )  through formulas: 

The diffracted field components 

aw 
= i k Z -  ae 

H@ = E r 8  = E  = O s  

(65-1) 

(65-2) 

( 65 -3) 

( 65 -4) 

where 

( $ + k 2 ) W  = 0 ,  ( 66) 
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- 0 on the entire surface of the - - aw 
ae and the boundary conditions reduce to 

conical riag. 

In gimeral, tiif: metmA of SdyltiC'rt med. in this  p~:.wi is lippiicabie to all 

diffraction problems tor which: 

1) The scatterer is a gerfect1.v conducting body of revolutim, whose 

surface is made of portions of concfrltric spherical surfaces and of portions of 

conical. s~rf'aixs having thsir  comrncn vertex at the center of the concentric 

spheres; 

2) The source i s  .in electric or magnecic dipole, axially oriented and 

located on the axis of symmetry of th2 sca t te re r .  

8. Conclusion 

The diffracted electromagnetic field for {he particular configuration 

antenna-scatterer considered in thic paper has been exactly determined. 

However, the solution is of little practical dtility as i t  stands, because the 

mode coefficients must satisfv infinite sets of linear algebraic equations that 

we are urtable tn solve. 

In all practical applications, only a finite number of modes I S  taken into 

account, and numerical resul ts  are chtainetl with the aid of a computer. The 

simplest way of choosing these preferred modes i s  to consider only the f i rs t  

few te rms  (lower modes) of the infinite s e r i e s  which represent the Hertzian 

functions; this c o r i e s p n d s  ta replacing each infinite set  of equations with a 

truncated se t  (an example of this p:oce?.u:.e is tieveloped in the Appendix). 

A better choice of the preferred set cf modes might be based on the physical 

consideration that modes in two acjacent r eg ims  of space which a r e  of like o rde r  



will show maximum coupling to each other; this selective mode cou.lAi>;z v,.is 

proposed and successfully employed hy Plonus (1961, 1963) in Pis calc.ulations 

of the radiation pattern of biconical ar'knnas. 

. 
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10. .Appendix. 

Let  us  consider the case in which  h > a. and LY = n / 2 ,  and le t  us suppose that 

ka i s  smaller  than unity. Taking intr.. account only the f i r s t  t w o  modes in 

regions II and XI, the infinite set  o f  linear equations (58) reduces to a truncated 

+ + 
1 '  2 1 

c d and d, . If the Bessel set of four equations in the four unknowns c 
L 

and Hankel functions a r e  expanded out i n  power sericls o f  ka ,  it is found that: 

where 

5i Q ,  
dl = - 48 P2(kh) - Q A ( k d 4  1 1  i + 0 [(kd2]} , 

(A-2)  

(A-3)  

( A - 4 )  

(A-5)  



4 

Q =  

zg 
13 

1 '? 
( - -  - 2,t kf 3 1: 

g l , w  = 

- 4g1. 3 

4/ 2 1 

-3g  d 
1 .,3 

1 
3 + 4 1  

(A-7)  

+ and the de'Lermintints Q I .  Ql, 5Jl and Q 

respectively the first. second, third and fourth column with the column: 

a r e  obtained from Q by replacing 2 

1 
I 
P 
(1 , 

I 

In particular, when A =  0 ( see  fig. 7 )  one hks that 

(A-9) 



Substitution of relations IA-1) to (A-4) lnto formula (56-2) yields: 

(A-11) 

(A-12) 

(A-13) 

where (4m -I)!! = i x 3 x 5 . . . x (4.m.- 1) is the semf-factorial of (4m - 1) . 

The Hcrtzim fmction U in region IV is therefore given by (see formula (48j): 
4 

where: 

25 & I +  1 
326 6 1 12 

M = 1 + -- ($Q2 - - -Q + - Q1c"+ 

and in particular: 
* 

Kleinman, R. E.  

Fwk,  V. (1945), 

Northover, F. H 

(A-14) 

(A-15) 

233 - -  2 73 + -  2 79 175 
lmg1lg33 - 54gi3 - 16 '11 + R '13 16 '33 192 . (A-16) 
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FIGURE CAPTIONS 

Fig. 1. Geometry for the scattering problem. 

Fig. 2. Case 0 < h < b = a 

Fig. 4. Case 0 < h < b, a = a, 

Fig. 7. Case 11 > a, h = 0, CY = n /2 .  
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